

Octo-Docs

Technological Feasibility Analysis

Dr. James Palmer

Garrison Smith
Peter Huettl

Kristopher Moore

x __

11/10/17

Table of Contents

1 Introduction ……………………………………………………………...2

2 Technological Challenges …………………………………………….... 3

3 Technology Analysis ……………………………………………………. 4

3.1 Selecting the Right Language ……….………………………………....4

3.2 Creating a Command-Line Parser ….…………………………………..7

3.3 Comparing Package Managers …….………………………………….. 8

4 Technology Integration …………….......……………………………...14

5 Conclusion ……………………………………………………………... 16

6 Sources ……………………………………...…………………………..17

1

1. Introduction

Octo-Docs is a team that was formed with a goal to improve how software development groups

create, edit, and interact with comments in their projects. The team is comprised of Garrison

Smith, Peter Huettl, and Kristopher Moore and we are working on creating a new documentation

management system called CrossDoc. The project is sponsored by Dr. James Palmer, who first

proposed that commenting, as a whole, is in need of an improvement.

Software development teams currently face the problem that their documentation is highly

dependent on their project’s codebase. This heavy integration of code and comments results in

documentation that is hard to view or edit externally, particularly by non-tech savvy individuals.

The globalization of software development groups means that not all developers working on a

particular codebase speak the same language; This is why many modern teams have groups

dedicated to the localization of the work environment. In traditional commenting, these helpful

code descriptors are buried deep within the code, and may often be confusing to find and edit.

Octo-Docs and Dr. Palmer aim to fix this with CrossDoc, a commenting system that connects

external comment stores to a codebase. By simply referencing external comments, this new

comment system will provide a great deal of flexibility and improvability to the standard

commenting system. Improvements such as distinct comment categories, an adapting comment

history, and user-specific comment modules will not only solve the initial commenting problem

but also provide an adaptable canvas to solve future documentation problems.

This document covers the technological feasibility of CrossDoc’s capabilities by addressing

several technologies that are key to its development. We begin by giving an overview of these

technologies and the problems that comprise the feasibility of the project in the section titled

“Technological Challenges.” After presenting the issues we can properly address them in the

“Technology Analysis” section by providing various solutions to the issues, and evaluate them

based on their value to CrossDoc. By clearly presenting the challenges and our options, we can

then clearly connect our proposed solutions in the “Technology Integration” section in which the

synergy between the solutions and our project will be made clear.

2

2. Technological Challenges

There are several major technological challenges that CrossDoc will need to overcome, and in

this section, we will introduce the three primary concerns. Challenges such as finding a portable

and adaptable programming language that can generate an easily accessible executable for all

major operating systems, creating or finding a dynamic command line argument parsing system

to handle input from a wide range of text editor plug-ins, and determining the best package

management systems to distribute our program. Each of these challenges presents a clear and

distinct hurdle to be overcome. By researching these decisions now, we can simplify the

implementation phase of CrossDoc and thus improve developmental iteration time.

The first challenge we face is finding a flexible programming language that we can use to

create the executable we need and that works well for development in a team environment. In this

paper, we are going to analyze the feasibility of two languages that we have specifically narrowed

the choices down to Python and C/C++.

Another challenge we will encounter is creating a functional dynamic command-line parser

with the flexibility to handle direct input and support multiple text editors through plug-ins.

Integration support for Atom, Emacs, and Vim are our current focus, along with creating a parser

that allows for the fast and easy creation of plug-in adaptors.

The goal of utilizing package management systems is to reach the most potential end-users and

provide them an easy avenue to integration into our system. These systems allow developers to

easily install new programs, often using a command line interface, but only for packages

(otherwise known as programs) that are uploaded to the system. By keeping a catalog of where

and how to install a program, these package managers can greatly simplify the installation

process. Because we plan on prioritizing adoption of our platform, providing an easy installation

through various package management systems is one key method of doing just that. We plan on

conducting research to determine which package managers are the best fit for our product.

3

3. Technology Analysis

Understanding the primary challenges we will face is only the first objective in evaluating

technological feasibility. By first clearly stating the problems, it is easier to address potential

solutions, which is what we will focus on in this section. In order to ensure our product is written

in a portable language, has a flexible command line interface, and is available on readily

available package managers, we plan on analyzing a wide variety of options.

In this section, we will research a wide variety of options to solve the problem, analyze the

research, and select the most viable solution to the problem at hand. With a particular solution

selected, we can then test and prove the feasibility of an implementation using this technology.

By carefully analyzing and mindfully filtering our options, we will end up with a development

plan that most accurately fits our project.

3.1. Selecting the Right Language

The challenge that we are encountering is that we want to be able to have a programming

language that is adaptable to all environments and making sure that this language will execute

well in regards to our project. In addition, making sure that the language we choose is flexible for

us as programmers and as well as the users who are using it. The two main languages that we are

researching are Python and C. Although, we as a group, are familiar with either language, we are

interested in finding the language that best fits the project’s requirements.

Potential Languages

This section's goal is to select between the two languages either Python or C . Python is a very

extensible language that features many standard and custom libraries [14]. Python also will make

this project much easier to manage in regards to readability which is something we are looking

for in this project. Alternatively, C provides a lot of flexibility in regards to program manipulation

4

[16]. For example, we will be able to have many different files and know exactly what our code is

doing when we have to make different libraries for our program. In the following sections, we

will weigh the pros and cons of each language, and determine which best fits our project.

Benefits of Python

Right now we are researching two languages that we want to use within the project. These two

languages are Python and C which is one of our key challenges within this project. The focus is

to determine what makes Python better than C because at the moment we are leaning towards a

Python approach for our program but we know that C has a lot of free roaming in regards to

programming the code [17].

For the language of Python, most programmers know and are aware of the simplistic behavior

that Python offers and that Python is the most understood language in a programming sense[18].

Python also has many embedded systems that could make the programming for our project seem

less tedious and allow us to explore these libraries that Python has so that we can focus more on

the project features and not the tedious stuff that we would have to do with C [18]. Additionally,

the improved readability will help detect respond to bugs in a timely manner.

Benefits of C

In regards to the C language, we know that C is compact and has a faster runtime for

programming languages. C also has an extremely fast development time as well, which can lead

to the efficient interpretation of the code when it runs through a compiler [19]. For example, C

can write code in a much smaller size compared to Python, such as a while loop or conditional

statements for higher level programming [17].

5

In our project, we did come to a conclusion that C can give us many unique functions within the

code base but Python will allow us to take advantage of the embedded systems. As well as still

allowing us to create and design programs for higher level performance [17]. In the future, the

end-goal might be to migrate to C, but at this moment Python seems to be the best option for our

project [19].

Functionality (1-5) C Python

Readability 3 - C language is difficult to
understand and Read [17]

5 - Easy organization and readability for
programmers [14]

Embedded Tools 4 - Offers 95% of embedded
systems and tools for
programmers [17]

4 - Same deal as C for embedded
programs, however, Python has libraries
for our project [17]

Development 5 - Development in C more
flexible in regards to
functionality purposes [16]

4 -Organizational purposes and
developing in Python can be easy for
programmers [14]

Prototype Feasibility

At this moment the main prototype that will be displayed is some basic command line functions

that will be created to provide the command line activities for a user. Right now this prototype is

still in development, however, the basic ideas of creating a file that contains that main

functionality for each command line is complete.In addition, we will use Python embedded

systems to create these functions, as well as having them organized and made so that if we were

going to transition to C that it would not be a difficult process to switch later down the line.

However, the basic functions that we have created using Python have been a lot easier to make

based on the object-oriented programming language style that Python has to offer and the access

to many libraries that are used within the basics of the Python language.

6

3.2. Creating a Command-Line Parser

To support the goals of the CrossDoc project, we must implement a system to handle operations

from any level the end-user may choose. The system must function using command-line

processes as well as actions executed by text-editors like Atom, Emacs, and Vim. To do this

effectively we must create the most efficient parser for all use-cases.

Possible Implementations

The substantial choice in the parser’s design is whether the system should be designed in a

monolithic or modular capacity. The monolithic approach creates a parser that is tightly coupled

and can draw off of other aspects of the code. The modular approach results in a parser that is

less cohesive, and communicates to other parts of the code through a set of standardized

procedures.

Choosing the Best Approach

The decision between a monolithic design and a modular design has been constantly contested

upon for various systems. The choice ultimately lies in their effectiveness within the

requirements of the given system. Monolithic designs tailor themselves better to systems that are

less likely to need additional functionality after release. Additionally, the monolithic approach

reduces redundancy in systems that frequently use and access the same information. Conversely,

modular design is more appealing for refactoring existing tools, adding functionality, and overall

testing and readability. For CrossDoc, a modularly designed parser is the most effective design

due to its maintainability, flexibility for adding in new supported editors, and its efficient

readability.

7

Parser Tech Demo

Since our command line parser needs to be flexible in its base form as well as within a text

editor, our technological demo must work within itself and with at least one other text editor. To

prove its ability we will draft the parser and all of its needed operations, then create adapter

plug-ins that will serve as the bridge between the parser’s interface and the text editor. For the

demonstration, we will show functionality between the parser and a plug-in for the Atom editor.

3.3. Comparing Package Managers

To ensure that our product has the best chance of widespread adoption, we are going to research

the most relevant package managers on which to distribute our program. We are going to be

looking into five major package management systems to assess how accurately they fit our

product. By researching multiple systems, we have the best chance to find multiple systems that

meet our criteria, in turn, increasing the market impact on our core target audience. This target

audience is both solo developers and teams of developers both of which utilize package

management systems. By fitting into existing package manager ecosystems, we can increase the

adoption of CrossDoc in both new and existing projects.

Available Systems

There are many package management systems available. Individual operating systems and

language environments have custom processes for installing a package or plugin. To ensure that

our product is available on the most potential platforms, we will select five candidate systems

that represent the major environments. By researching options for different operating systems, we

can judge systems by additional relevant criteria.

8

As such, our initial list of viable package managers will be:

● Chocolatey - Windows [1]

● Homebrew - Mac [2]

● Nix - Unix [3]

● Advanced Packaging Tool - Debian/Ubuntu [4]

● Python Package Index - Python Environment [5]

Given our projected timeline, we will only have the time to integrate with two or three package

management systems. This allows us to cover the maximum number of users while still

remaining feasible to implement. Every system on this list has merit and many users, but we will

need to narrow down the options to the best candidates for our use-case.

Manager Criteria Analysis

In order to simplify presentation and provide structure to the research, we will be judging the

package manager alternatives on three main criteria; Ease of Development , Popularity , and

New-User Friendliness . Ease of Development is how difficult an integration into the service

would be, and is also directly correlated to how well-documented a package manager is. This

data point is particularly important when considering our project’s deadline and overall timelines.

Popularity represents how adopted a manager is for its particular system. By targeting systems

with the most users, we can expand the potential reach of our program. This data point will be

scaled to accurately represent the entire market and not a specific OS. This may unfairly

represent managers which have a large market share within their OS, but their OS is not

particularly popular in the market as a whole. New-User Friendliness is a criterion that will not

affect our development process, but a crucial one nonetheless. Again, in order to attract the most

potential users, we need to be on platforms that are easily accessible so that we have room to

grow and gain new users.

9

Analyzing Ease of Development

The first of the criteria to be reviewed is Ease of Development . In order for a package manager to

score highly in this section, it must have easily accessible general documentation on uploading

new packages, language-specific documentation , and a flexible install process . By analyzing

the systems on these criteria, we can easily quantify how well they each fit with our product.

Chocolatey : Chocolatey’s GitHub account has been around since 2011, so the project has had

almost seven years to develop and expand [6]. This is evident when viewing their documentation

wiki [7]. Chocolatey has a wide array of features, and all of them are well documented on this

page.

Homebrew : Similarly to Chocolatey, Homebrew has extensive documentation for every aspect

of their system, and from every perspective (Users, Contributors, and Maintainers) [8]. One such

documentation page is their Python-specific author guide [9].

Nix: Nix provides a “Package Manager Guide” [9] on their website that outlines every aspect of

their system, including both how to use it, and how to create new expressions. Nix also has a

GitHub documentation file detailing the creation process for Python scripts, similar to

Homebrew, which would greatly streamline the process [11].

Advanced Packaging Tool: APT is a tool for managing packages specifically for Debian

systems. Unfortunately, although APT is a very popular Linux, the documentation is dispersed

across various websites and pages. Without a centralized repository for implementation info, it

will be very difficult to debug issues we run into while integrating our project.

Python Packaging Index: PIP is a Python-specific package manager, which means that our

implementation with PIP relies heavily on whether or not our program is written in Python.

Luckily, our project is a good fit for Python and PIP integrates well with that. Python Packaging

Index has a centralized source for documentation regarding packages [12].

10

Analyzing Popularity

The next important criteria to analyze is a system’s Popularity . Popularity is difficult to quantify,

but is a good indication of a manager’s pulse is the number of packages hosted on the platform.

This does not directly correlate to the number of users, but can be used to gauge the interest in

the platform as a whole. This, combined with ratings on software rating sites, and open source

contributions will be used to measure a package manager’s popularity. All package numbers and

open source contribution numbers were updated on October 26th, 2017.

Chocolatey: Chocolatey’s homepage features a counter of both unique, and total packages on the

platform [1]. Through this, we know that Chocolatey has 5,351 unique packages and 39,743 total

packages . Also, in “chocolatey-coreteampackages”, the GitHub repository [13], there are 61

contributors with a total of 4,853 commits .

Homebrew: Homebrew is also actively contributed to through open source. Through

Homebrew’s GitHub page [15], we can see that Homebrew is very active with many different

contributors and commits across all of their repositories (the primary repository alone has 14,361

commits from 579 contributors). There are about ~6500 formulae listed on Homebrew formulae

package listing page [20].

Nix: Nix is not open source but does still have publicly accessible data. Nix claims on its

homepage [3] that it has nearly 6,500 packages on its service.

Advanced Packaging Tool: APT contains an extensive library of over 29,000 packages that

include “everything from the Linux Kernel to games” [22]. Similar to Nix, APT is not open

source.

Python Packaging Index: PIP has a total package count of 120,293 . PIP contains the most

packages of any of the alternative systems.

11

Analyzing New-User Friendliness

The last criteria on which to judge is New-User Friendliness . This category is more subjective

and can be analyzed through the attempted installation of use of the managers. A user-friendly

manager will provide a clear user installation guide with easy to follow package fetching steps.

Chocolatey: Chocolatey features a prominent “Install Now” button on its homepage [1],

instantly directing the user to the information required to install the product, and this page

features easy to follow installation instructions.

Homebrew: Homebrew is similar to Chocolatey in that it prominently features the single line

installation command on its homepage [2]. Homebrew’s installation process is simple and

intuitive, with an interactive command line interface during the install.

Nix: Nix is a package manager that shares its name with many other products, and as such, user

installation instructions are not as easy to find as the two previous managers. That being said, Nix

features a simple single line installation script on its homepage [3], similarly to Homebrew.

Advanced Packaging Tool: APT is the simplest user installation for those who are already using

a Debian system because it comes pre-installed. Although, the initial user barrier of Debian

systems like Linux may be a factor.

Python Packaging Index: PIP is installed by running a single Python command. This is an

intuitive process for users who are already familiar with the Python language.

Analysis Results

In summary, each package manager has their individual pros and cons, but in order to select the

most viable candidates, we have quantified the value of each alternative to our product on the

three main categories listed. Below is a table displaying the final results of each manager with

respect to their competitors on the topic.

12

Functionality (1-5) Chocolatey Homebrew Nix APT PIP

Ease of
Development

4 5 5 2 5

Popularity 4 4 3 4 5

New-User
Friendliness

3 4 4 5 4

Based on our research and the final scores of each package manager, we plan on creating

implementations for both Homebrew and PIP . Creating implementations for these two options

give us the broadest coverage of the market while still proving feasible to implement

Proving Feasibility of Implementations

We plan on presenting the feasibility of these technologies by creating an implementation first in

PIP due to its broad market coverage and well-documented implementation instructions. This

implementation will be fed the external source of the test code, likely hosted on GitHub, that can

then be hosted for users to install on the PIP platform. This will prove that a full implementation

using CrossDoc is feasible and will allow us to familiarize ourselves with the core aspects of

each ecosystem.

13

4. Technology Integration

The technology we have considered to use while integrating our project ranges from languages to

libraries, and to package management, with these challenges we have come up with a plethora of

solutions that we could use to help out with these issues. Many options present different

challenges within themselves as well as having advantages and disadvantages between these

solutions. Designing each solution and comparing which solution can improve the issue and/or

fix it could help us better understand where we should be when it comes to prototyping our

project. Moreover, we must look at each solution in depth, so we can come to a justification on

which solution can be better integrated within our system but as well as not ruling out the other

options in the end.

The first challenge that we ran into was deciding what type of programming language we should

use when integrating our project. This challenge is a priority because it brings us one step closer

to starting our prototype later in the project. The solutions that came up for the challenge was

two different programming languages, C and Python . Both languages were discussed and the

key solution for our challenge was to go with Python because it is easily accessible, readable,

and it has flexible libraries that C does have for our project.

The next challenge that we face is parsing through a command line interface and how we want to

parse through this interface. The two main solutions that we discussed regarding how we wanted

to parse through the command line interface, were monolithic design and modular design . Both

of these different designs have their benefits for our project as well as some more challenges that

we might have to face as well. However, the best approach for the parsing design is to go with

modularly designed parser it is the most effective design due to its maintainability, flexibility for

adding in new supported editors, and more efficient readability.

Finally, the last challenge that we discussed was the type of packaging system that we want to

use in our project. Furthermore, Packaging systems are made so that when a user gets our

product it can be easily accessible or at least easily executable from a file. The technology for

packaging systems has evolved greatly over time and when we looked at the solutions for the

14

packaging systems we recognized that there was going to be many options for this challenge

which makes this challenge one of the more challenging ones. In addition, we want to make sure

that we choose the correct package system because it all depends on how easy it is for end users;

which in the end is our main goal. Furthermore, we want to make sure that all users will have

access to this project. The solutions that we had in mind are Chocolatey, Homebrew, Nix,

Advanced Packaging tool, and Python Package Index . However, the solution that seems to

work the best in our case is the Python Package Index or PIP for short. The reason why is

because since Python is a program that can work on all operating systems than the packaging

system could also be universal for our project and the end-users as well.

Below is a graphical representation of the synergy between our solutions and how each one

interacts with each other. This show that, the solutions we chose happened to work out perfectly

with each other and have the best integration between each other as well. The information for

this is in the image below:

15

5. Conclusion

Commenting in the modern age is in dire need of enhancement, the highly coupled nature of

comments and their codebase leads to a multitude of problems for software development teams.

CrossDoc will correct this by providing additional functionality and flexibility to standardized

programming environments.

This feasibility analysis was created to assess distinct technological hurdles, and provide

solutions to them. Further, it serves as a research platform for the solutions to evaluate the

optimal choices for CrossDoc implementation.

Challenge Proposed Solution Confidence Level

Programming Language Python 90%

Command Line Parser Modular Design 95%

Package Management PyPI, Homebrew 98%

In summary, our feasibility analysis has yielded multiple solutions to our core challenges. We

have concluded that utilizing Python, designing our command line parser in a modular method,

and deploying with the PyPI and Homebrew packaging systems are the most effective choices for

CrossDoc.

16

6. Sources

[1] - Chocolatey Homepage (https://chocolatey.org/)

[2] - Homebrew Homepage (https://brew.sh/)

[3] - Nix Homepage (https://nixos.org/nix/)

[4] - APT Homepage (https://help.ubuntu.com/lts/serverguide/apt.html)

[5] - PIP Homepage (https://pypi.python.org/pypi)

[6] - Chocolatey GitHub Stats - (https://api.github.com/users/chocolatey)

[7] - Chocolatey Docs (https://chocolatey.org/docs)

[8] - Homebrew Docs (https://docs.brew.sh/)

[9] - Homebrew Python-Specific Docs (https://docs.brew.sh/Python-for-Formula-Authors.html)

[10] - Nix Docs (https://nixos.org/nix/manual/)

[11] - Nix Python-Specific Docs
(https://github.com/NixOS/nixpkgs/blob/master/doc/languages-frameworks/python.md)

[12] - PIP Docs (https://packaging.python.org/tutorials/distributing-packages/)

[13] - Chocolatey Packages Repo (https://github.com/chocolatey/chocolatey-coreteampackages)

[14] - Python Docs (https://www.python.org/)

[15] - Homebrew GitHub User (https://github.com/Homebrew)

[16] - C Docs (http://www.learn-c.org/)

[17] - Python v.s C (https://www.activestate.com/blog/2016/09/python-vs-cc-embedded-systems)

[18] - Python pros
(https://www.infoworld.com/article/2887974/application-development/a-developer-s-guide-to-th
e-pro-s-and-con-s-of-python.html)

[19] - C pros
(https://www.invensis.net/blog/it/benefits-of-c-c-plus-plus-over-other-programming-languages/)

[20] - Homebrew Package Listing (http://formulae.brew.sh/browse/a)

[21] - Monolithic and Modular Architecture
(https://books.google.com/books?id=SyHWBgAAQBAJ&pg=PA94#v=onepage&q&f=false)

[22] - APT Debian Wiki (https://wiki.debian.org/Apt)

17

https://chocolatey.org/
https://brew.sh/
https://nixos.org/nix/
https://help.ubuntu.com/lts/serverguide/apt.html
https://pypi.python.org/pypi
https://api.github.com/users/chocolatey
https://chocolatey.org/docs
https://docs.brew.sh/
https://docs.brew.sh/Python-for-Formula-Authors.html
https://nixos.org/nix/manual/
https://github.com/NixOS/nixpkgs/blob/master/doc/languages-frameworks/python.md
https://packaging.python.org/tutorials/distributing-packages/
https://github.com/chocolatey/chocolatey-coreteampackages
https://www.python.org/
https://github.com/Homebrew
http://www.learn-c.org/
https://www.activestate.com/blog/2016/09/python-vs-cc-embedded-systems
https://www.infoworld.com/article/2887974/application-development/a-developer-s-guide-to-the-pro-s-and-con-s-of-python.html
https://www.infoworld.com/article/2887974/application-development/a-developer-s-guide-to-the-pro-s-and-con-s-of-python.html
https://www.invensis.net/blog/it/benefits-of-c-c-plus-plus-over-other-programming-languages/
http://formulae.brew.sh/browse/a
https://books.google.com/books?id=SyHWBgAAQBAJ&pg=PA94#v=onepage&q&f=false
https://wiki.debian.org/Apt

